Keyword Search Result

[Keyword] satellite communications(40hit)

21-40hit(40hit)

  • A Study on Site Diversity Techniques Related to Rain Area Motion Using Ku-Band Satellite Signals

    Yasuyuki MAEKAWA  Takayuki NAKATANI  Yoshiaki SHIBAGAKI  Takeshi HATSUDA  

     
    PAPER-Propagation

      Vol:
    E91-B No:6
      Page(s):
    1812-1818

    Directions and speeds of the motion of rain areas are estimated for each type of rain fronts, using time differences detected in the rain attenuation of the Ku-band satellite radio wave signals that have been measured at Osaka Electro-Communication University (OECU) in Neyagawa, Osaka, Research Institute of Sustainable Humanosphere (RISH) in Uji, Kyoto, and MU Observatory (MU) of Kyoto University in Shigaraki, Shiga, for the past five years since September 2002. These directions and speeds are shown to agree well with those directly obtained from the motion of rain fronts in the weather charts published by Japan Meteorological Agency. The rain area motion is found to have characteristic directions according to each rain type, such as cold and warm fronts or typhoon. A numerical estimate of the effects of site diversity techniques indicates that between two sites among the three locations (OECU, RISH, MU) separated by 20-50 km, the joint cumulative time percentages of rain attenuation become lower as the two sites are aligned along the directions of rain area motion. In such a case, compared with the ITU-R recommendations, the distance required between the two sites may be, on an average, reduced down to about 60-70% of the conventional predictions.

  • Design Method for a Low-Profile Dual-Shaped Reflector Antenna with an Elliptical Aperture by the Suppression of Undesired Scattering

    Yoshio INASAWA  Shinji KURODA  Kenji KUSAKABE  Izuru NAITO  Yoshihiko KONISHI  Shigeru MAKINO  Makio TSUCHIYA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:4
      Page(s):
    615-624

    A design method is proposed for a low-profile dual-shaped reflector antenna for the mobile satellite communications. The antenna is required to be low-profile because of mount restrictions. However, reduction of its height generally causes degradation of antenna performance. Firstly, an initial low-profile reflector antenna with an elliptical aperture is designed by using Geometrical Optics (GO) shaping. Then a Physical Optics (PO) shaping technique is applied to optimize the gain and sidelobes including mitigation of undesired scattering. The developed design method provides highly accurate design procedure for electrically small reflector antennas. Fabrication and measurement of a prototype antenna support the theory.

  • Layer 3 Diversity Reception Technology for Ku-Band Mobile Satellite Communication Systems

    Fumiaki NAGASE  Jin MITSUGI  Masayoshi NAKAYAMA  Masazumi UEBA  

     
    PAPER-Satellite Communications

      Vol:
    E89-B No:6
      Page(s):
    1856-1861

    We describe a layer 3 diversity reception scheme that enhances the transmission characteristics of Ku-band mobile satellite communication systems. This scheme can realize high-speed communication for vehicles that experience shadowing caused by terrestrial obstacles such as tunnels, buildings and bridges, especially for trains that frequently experience shadowing from the trolley wire structures. Layer 3 diversity was chosen for long distance diversity to prevent signal shadowing caused by terrestrial obstacles while minimizing the alterations of existing receivers. The technology enables high-speed communication under shadowing conditions in a running train environment.

  • Circularly Polarized Rounded-Off Triangular Microstrip Line Array Antenna

    David DELAUNE  Josaphat Tetuko SRI SUMANTYO  Masaharu TAKAHASHI  Koichi ITO  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:4
      Page(s):
    1372-1381

    The Japan Aerospace Exploration Agency (JAXA) plans to launch a geostationary satellite called Engineering Test Satellite VIII (ETS-VIII) in FY 2006. In this paper, a microstrip line array antenna, which has a very simple structure, is introduced to radiate a circularly polarized wave aiming at ETS-VIII applications. This antenna consists of a triangular conducting line with its vertexes rounded off, located above a ground plane, with a gap on one of its side to produce a circular polarization. The proposed antenna is analyzed by numerical simulations for a single element as well as for a three elements array configuration and the possibility of beam-switching in the azimuth space is experimentally confirmed in the latter case. It is found that by properly feeding the elements constituting the array antenna, for an elevation angle El = 48in Tokyo area, three beams are created in the conical-cut direction with a minimum gain more than 6.6 dBic and an axial ratio less than 3 dB.

  • Seamless Symbol Rate Switching Scheme for Multi-Rate FDMA Modem

    Fumihiro YAMASHITA  Kiyoshi KOBAYASHI  Kohei OHATA  Masazumi UEBA  

     
    PAPER-Satellite Communication

      Vol:
    E89-B No:2
      Page(s):
    545-555

    A new seamless symbol rate switchable modem for multi-rate FDMA systems is proposed in this paper. In the new modem, a novel clock phase compensation algorithm makes it possible to switch the symbol rate synchronously between the transmitter and the receiver, with no degradation in BER when the symbol rate is changed. In addition, by matching the interpolation filter to the symbol rate, this modem is capable of operating at lower clock speeds, which greatly reduces the consumption power. Computer simulations confirm its fundamental performance. Simulation results show that the proposed power-efficient symbol rate switchable modem can change the symbol rate without degrading BER performance.

  • Influence of Transmitting Ground and Satellite Station HPA Nonlinearities on Satellite Communication System Performance in the Presence of Cochannel Interference

    Mihajlo C. STEFANOVIC  Goran T. DJORDJEVIC  

     
    PAPER-Satellite Communication

      Vol:
    E88-B No:7
      Page(s):
    3005-3009

    Taking the uplink and downlink cochannel interference and noise into account, we determine the error probability in detecting a binary phase-shift keying (BPSK) signal transmitted over a satellite system containing two high power amplifiers (HPA). The first one is the constituent part of the transmitting ground station and the second one is the constituent part of the satellite station. The emphasis is placed on determining the system performance degradation imposed by the influence of the nonlinear characteristic of the HPA at the transmitting ground station in combination with the negative influences of the uplink and downlink cochannel interference, as well as the nonlinear characteristic of HPA at the satellite station.

  • Optimum Radio Channel Allocation Taking Account of Both Frequency and Power Constraints for Wide-Area Wireless Access Systems

    Satoshi KONISHI  Yoji KISHI  Shinichi NOMOTO  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E87-B No:12
      Page(s):
    3722-3733

    In wide-area wireless access systems such as satellite communications systems and stratospheric platform systems, electric power supplies for radio communications are realized using solar photovoltaic cells and/or fuel cells. However, the on-board weight limits restrict the number of cells that can be equipped. In addition, the transmission power of such systems is limited taking account of issues and regulations on sharing the same frequency band with other systems. Hence, both the frequency band and electric power is limited, which are crucial radio resources for those systems. Although radio channel allocation methods taking account of the frequency constraint only or the power constraint only have been proposed, radio channel allocation methods taking account of both constraints simultaneously have been insufficiently studied. This paper proposes a radio channel allocation method that provides global optimum allocation results by utilizing the linear programming method. The proposed method has features such that the method first allocates radio channels in proportion to the traffic demand distributed over the service coverage area and then maximizes the total radio channels allocated to systems. Numerical results are presented for a stratospheric platform system that covers an area of Japan, as an example, to demonstrate that the proposed method optimally allocates radio channels taking account of both constraints while efficiently allocating excess resources. In addition, whether a system reaches either the frequency or power limit can be estimated, by investigating the radio channel allocation results. Furthermore, enhanced linear programming models based on a method aiming at practical use of the radio channel allocation results in operation are also introduced. The enhanced model is demonstrated to work effectively to avoid unbalanced radio channel allocations over geographical areas. The proposed method and linear programming models are useful not only for making pre-plans but also for determining the amount of necessary frequency and power resources in designing systems.

  • Wearable Microstrip Antenna for Satellite Communications

    Masato TANAKA  Jae-Hyeuk JANG  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2066-2071

    We report a flexible and lightweight wearable microstrip antenna that can be sewn into clothing and hats. This antenna is composed of felt and a conductive woven fabric. Experimental results clearly show that this antenna operates normally as a conventional microstrip antenna, and is practical and feasible for personal satellite communications.

  • Enhanced Multi-Correlator AFC for Fast and Wide Range Frequency Acquisition

    Fumihiro YAMASHITA  Kiyoshi KOBAYASHI  Yoshinori NAKASUGA  Jin MITSUGI  Masazumi UEBA  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2072-2081

    This paper presents a new automatic-frequency control (AFC) configuration capable of removing wide range frequency offsets (up to about 0.625 fs, where fs is signal symbol rate). The new configuration consists of an AFC that removes frequency offsets between 0.125 fs and another AFC that detects the frequency offset range coarsely between 0.625 fs. This paper describes the principle of the new AFC configuration. The proposed AFC configuration employs four correlators to enhance the acquisition range. It also adopts the reverse modulation scheme to decrease the acquisition time. The performance of the new AFC configuration is confirmed via computer simulations. It is shown that the proposed configuration can accommodate wide range frequency offsets as well as reduce the acquisition time.

  • Reflector Antennas for Earth Stations and Radio Telescopes Open Access

    Shinichi NOMOTO  

     
    INVITED PAPER

      Vol:
    E86-B No:3
      Page(s):
    925-943

    The paper overviews and surveys Japan's reflector antennas for earth stations and radio telescopes since the 1960's. Some interferometers for radio astronomy are included. Japanese original technologies regarding reflector antenna design and measurement are also described. There are 35 figures and 3 tables.

  • Performance Analysis of Mobile Satellite Noncoherent DS-CDMA Systems with Orthogonal Signals

    Yong-Hoon CHO  Jun-Kui AHN  Een-Kee HONG  Keum-Chan WHANG  

     
    PAPER-Satellite and Space Communications

      Vol:
    E84-B No:3
      Page(s):
    623-633

    As noncoherent direct sequence code-division multiple-access (DS-CDMA) mobile satellite communications, two typical transmission schemes are compared; one is a quasi-synchronous differential BPSK (QS-DBPSK) where orthogonal signals are used for reducing the multiple access interference and the other is M-ary orthogonal signaling (MOS) scheme where orthogonal signals are used for exploiting more efficient modulation. The performances are evaluated in additive white Gaussian noise (AWGN) and shadowed Rician fading (SRF) channels and the effects of timing misalignments in the QS-DBPSK system and the amount of Doppler shifts of a SRF channel are investigated. The results show that MOS much outperforms QS-DBPSK in the region of low system loading up to about 50% and a precise chip synchronization is required for QS-DBPSK. In a SRF channel, it is also shown that QS-DBPSK much outperforms MOS in a slow fading channel but MOS has a performance gain against the large Doppler shift.

  • Adaptive CDMA Scheme as a Rain Fade Countermeasure in Ka-Band Geosynchronous Satellite Communications

    Dong-Hee KIM  Seung-Hoon HWANG  Ui-Young PAK  Keum-Chan WHANG  

     
    PAPER-Satellite and Space Communications

      Vol:
    E83-B No:12
      Page(s):
    2600-2606

    To achieve high link availability at Ka-band geosynchronous satellite communication systems, an adaptive CDMA scheme as a rain fade countermeasure is proposed. The proposed adaptive CDMA scheme reserves and shares orthogonal sequences to countermeasure a rain fade. In the adaptive CDMA scheme, the base station allocates a set of orthogonal sequences to each user, and the number of sequences in a set is determined by the amount of rain attenuation. A symbol repetition technique is also used to compensate signal energy loss due to the rain fade. Our results show that when the base station has 64 free orthogonal codes, the adaptive CDMA scheme can save on its power by 4.2 dB compared to conventional CDMA scheme. The occupation rate of codes also shows that the adaptive CDMA can support multiple users simultaneously in even severe rain fade condition.

  • Key Aspects and Technologies of Satellite Communications toward Multimedia Era

    Fumio TAKAHATA  

     
    INVITED PAPER

      Vol:
    E80-B No:1
      Page(s):
    3-7

    Key aspects and technologies of future satellite communications are discussed toward multimedia era. Onboard processing called the switchboard in the sky and networking taking full advantage of features peculiar to satellite communications are pointed out as essential technologies to overcome a variety of big challenges for realizing future satellite communications. Several experimental and commercial systems are introduced as the first step toward multimedia era.

  • Performance Evaluation of VEEC: The Virtual Execution Environment Control for a Remote Knowledge Base Access

    Yoshitaka FUJIWARA  Shin-ichiro OKADA  Hiroyuki TAKADOI  Toshiharu MATSUNISHI  Hiroshi OHKAMA  

     
    PAPER-Protocol

      Vol:
    E80-B No:1
      Page(s):
    81-86

    In a conventional client-server system using the satellite communications, the responsibility of the system to the client user is considerably degraded by the long transmission time between the satellite and the ground terminal as well as the relatively low data transmission rate in comparison with the ground transmission line as the Ethernet. In this paper, a new client-server control, VEEC, is proposed to solve the problem. As a result of the experimental performance studies, it is clarified that the responsibility in the client is remarkably improved when the pre-fetching mechanism of VEEC works efficiently.

  • Double-Layered Inclined Orbit Constellation for Advanced Satellite Communications Network

    Kazuhiro KIMURA  Keizo INAGAKI  Yoshio KARASAWA  

     
    PAPER-System Technology

      Vol:
    E80-B No:1
      Page(s):
    93-102

    The link properties of double-layered constellation composed of inclined orbits for an advanced global satellite communications network connected by optical inter-satellite links (ISLs) have been evaluated. The constellation consists of lower layer satellites for mobile and personal satellite communications, and upper layer satellites for large-capacity fixed satellite communications and feeder links. Optical inter-satellite links, which can perform high-capacity communications with small terminals, are used for all inter-satellite data transmission. Although a satellite constellation using polar orbits in both layers offers the merit of simplicity in network configurations, it has disadvantages caused by the satellite consentration above high latitudes. The inclined orbit constellation offers the potential for reducing the required number of satellites improving ling properties, and enhancing the coverage in middle and low latitudes, by selecting the optimum orbital inclinations. The link properties between the satellites and terminals on the ground, optical ISL properties, and required number of satellites were evaluated for constellations using inclined orbits, and compared with those of a polar orbit constellation. Three kinds of inclined orbit constellations achieving continuous double coverage, which is a minimum requirement for future advanced satellite communications applying satellite diversity, were assumed for each layer.

  • A Satellite Communication System for Interactive Multimedia Networks

    Masayoshi NAKAYAMA  Manabu NAKAGAWA  Youichi HASHIMOTO  Kazunori TANAKA  Hiroshi NAKASHIMA  

     
    PAPER-System and Technology

      Vol:
    E80-B No:1
      Page(s):
    103-108

    Recently, computer communications, especially Internet services, have become popular and as a result, high-speed network access circuits are now desired. NTT has developed an economical and high-speed multimedia computer network, combining satellite and terrestrial circuits. The satellite circuit transmission rate is approximately 30-Mbit/s. To select IP packets from such high-speed satellite circuits, this system employs the asynchronous transfer mode (ATM) in the satellite section and we have developed a new economical satellite circuit receive adapter (SRA) for the satellite section. This paper describes the system configurations and the key network control technologies for multi-link routing, high speed processing and broadcasting.

  • An Efficient Dual-Channel Synchronisation Scheme for the Return Link of CDMA Mobile Satellite Systems

    Domenico GIANCRISTOFARO  R. E. SHERIFF  

     
    PAPER

      Vol:
    E79-A No:12
      Page(s):
    2050-2061

    In the envisaged Universal Mobile Telecommunications System (UMTS), the satellite component will have to provide services to mobile or, in some cases, hand held terminals with a required grade of user co-operation and link availability in various communication environments. This may require the capability of the satellite link to cope with more severe multipath environments than those for which mobile satellite links are most frequently designed (maritime or open rural applications); unfortunately, when the mobile radio channel is affected by multipath and a coherent demodulation is chosen, the phase synchronisation can be a critical issue. To satisfactorily deal with the arising difficulties, a dual channel demodulation is a viable and efficient strategy for the forward link, since only one common pilot channel is needed in this case. If the same dual channel demodulation is considered for the return link, an unacceptable capacity reduction may result. In this paper, some synchronisation strategies are analysed and an efficient dual channel demodulation scheme is proposed for the return link of a satellite DS-CDMA mobile communication system; furthermore, the impact on the overall system performance or capacity is analysed.

  • New Carrier Frequency Assignments for Minimizing Intermodulation Products in Two-Level SCPC Systems

    Sang M. LEE  Sung Chan KO  Hyung Jin CHOI  

     
    PAPER-Satellite Communication

      Vol:
    E78-B No:3
      Page(s):
    387-397

    In this paper, we propose an efficient method (called DIRIC algorithm) to allocate carrier frequencies so as to minimize intermodulation products in two-level SCPC systems in which Hub station and many Remote stations communicate each other through satellite transponder. We also present a very efficient method to evaluate intermodulation products with substantially reduced CPU time in two-level SCPC systems. We compare and analyze the performance of several frequency allocation methods to extend DELINS-INSDEL algorithm (which is proposed by Okinaka) to two-level SCPC systems. When the proposed algorithm is applied to systems with modulated carrier, it is verified that this algorithm has the same efficiency as the unmodulated carrier. It is also shown heuristically that certain initial assignment algorithms perform better than random assignment.

  • In Search of the Minimum Delay Protocol for Packet Satellite Communications

    Eric W. M. WONG  Tak-Shing Peter YUM  

     
    PAPER

      Vol:
    E76-B No:5
      Page(s):
    508-517

    Under the conditions of Poisson arrivals and single copy transmission, we designed a minimum delay protocol for packet satellite communications. The approach is to assume a hybrid random-access/reservation protocol, derive its average delay and minimize the delay with respect to all tunable system parameters. We found that for minimum average delay,1) a spare reservation should normally but not always be made for each packet transmission.2) all unreserved slots (i.e. Aloha slots) should be filled with a packet rate of one per slot whenever possible. In other words, the utilization of Aloha slots should be maximized.3) an optimum balance between transmitting packets and making reservations before transmission should be maintained.

  • Theory and Performance of Frequency Assignment Schemes for Carriers with Different Bandwidths under Demand Assignment SCPC/FDMA Operation

    Kenichiro CHIBA  Fumio TAKAHATA  Mitsuo NOHARA  

     
    PAPER

      Vol:
    E75-B No:6
      Page(s):
    476-486

    This paper discusses and evaluates, from the viewpoints of definition, analysis, and performance, frequency assignment schemes that enable the efficient assignment of multiple-bandwidth carriers on the transponder in SCPC/FDMA systems with demand assignment operation. The system considered handles carriers of two different bandwidths, and assigns only consecutive slots on the transponder band to broadband carriers. Three types of frequency assignment schemes are proposed, each of which incorporates one or both of two assignment concepts: (1) pre-establishment of assignment priorities on the transponder band, and (2) establishment of broadband slots to guide broadband carrier assignment. Following a definition of the schemes, equations are derived to theoretically analyze performance factors such as call loss for the narrowband and broadband carriers, and system utilization efficiency. Finally, theoretical performance calculated for various traffic and system conditions are presented and evaluated, for the purpose of comparison between the three schemes. Computer simulation results are also presented, to demonstrate the accuracy of the derived equations and to supply data for models too large for theoretical computation. Main results obtained are as follows. (1) Regardless of traffic or system conditions, the assignment scheme incorporating both assignment priorities and broadband slots shows the best performance in terms of broadband call loss and system utilization efficiency. (2) The establishment of broadband slots improves performance when the ratio of broadband traffic to the total traffic volume is high, but worsens performance when the narrowband traffic ratio is higher. (3) All aspects of performance improve with the increase of the total number of assignable slots on the transponder band.

21-40hit(40hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.